■出售外链〓提升排名┿【QQ:1012189958】 1号站 1号站平台 1号站娱乐 一号站平台 拉菲娱乐 拉菲2 拉菲娱乐 万达平台 万达平台 万达平台 万达平台 万达娱乐 万达娱乐 万达娱乐 东森平台 东森平台 东森平台 东森娱乐 东森娱乐 东森娱乐 杏彩平台 杏彩平台 杏彩平台 杏彩平台 杏彩娱乐 杏彩娱乐 杏彩娱乐 杏彩娱乐 杏彩娱乐 凤凰平台 凤凰平台 凤凰平台 凤凰平台 凤凰平台 凤凰娱乐 凤凰娱乐 凤凰娱乐 凤凰娱乐 凤凰娱乐 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 娱乐天地 世爵平台 世爵平台 世爵平台 世爵平台 翡翠平台 世爵娱乐 世爵娱乐 世爵娱乐 世爵娱乐 翡翠平台 翡翠平台 翡翠平台 翡翠娱乐 翡翠娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 畅博娱乐 华宇平台 华宇平台 华宇平台 华宇平台 华宇平台 华宇平台 华宇平台
您现在所在的位置:主页 > 投资
麦肯锡:全球人工智能投资现状及发展趋势(5)
来源:网络整理 2017-07-18 17:09

IBM承诺投资30亿美元,使其沃森认知计算服务成为互联网上的主要力量。百度在过去的二年半中投入了15亿美元进行人工智能研究。此外,百度还投入2亿美元,成立了一个新的内部风险投资基金。同时,大型科技公司一直在积极购买AI创业公司,不仅仅是为了获得技术或客户,而是为了获得优质的人才。该领域的真正专家池很小,阿里巴巴,亚马逊,Facebook,谷歌等科技巨头都聘请了很多专家。

许多公司采用并购的方式来绑定顶尖人才,这种做法被称为“收购式招聘”,通常创业公司中每人的价值通常能达到500万美元到1000万美元。最近的一份报告强调,由于人才短缺和成本上涨,整个行业的AI相关人才缺口在10000以上,用于这些人才的薪资预达到了6.5亿美元。总的来说,兼并对于AI公司来说是增长最快的外部资源,根据麦肯锡的估计,2013年至2016年,这些公司的价值复合年增长率将超过80%。自2010年以来,领先的高科技企业和先进制造商已经完成了100多项并购交易。

谷歌去年完成了24笔收购交易,包括8项计算机视觉和7项语言处理。苹果是第2大活跃的收购方,已经结束了九9 个,平均分配在计算机视觉,机器学习和自然语言处理之间。这些公司也在扩大对国外人才的追求,例如,Facebook在巴黎开设AI实验室,将补充纽约和硅谷的类似设施,使公司更容易在欧洲招聘高级研究人员。谷歌最近在蒙特利尔大学投资了450万美元;英特尔捐赠了150万美元,在佐治亚理工大学建立机器学习和网络安全研究中心;而NVIDIA正在与台湾大学合作,在台北设立AI实验室。

AI的喧哗声足够大,已经达到足以鼓励风投和私人进入的地步。其他的外部投资,比如天使轮基金和种子孵化者,也都被激活了。麦肯锡估计2016年的年度外部投资总额为80亿美元至120亿美元。机器学习吸引了近60%的投资,这很可能是因为它是许多其他技术和应用的推动者,如机器人和语音识别。另外,投资者也被机器学习所吸引,因为像以前一样,安装新代码比重建运行该软件的机器人或其他机器更快更容易。这一领域的企业并购也快速增长,2013至2016年的复合年增长率约为80%。

麦肯锡:全球人工智能投资现状及发展趋势

与数字革命的其他投资相比,AI 的投资仍处于初期阶段。例如,人工智能在2016 年吸引了所有VC 风险投资的2%至3%,而信息技术普遍上涨了60%。 AI在2016年的PE公司投资总额中所占比例只有小部分:1%至3%。但AI投资增长较快,从2013年到2016年,AI技术的外部投资年复合增长率达到近40%。而2010年至2013年则为30%。不仅交易规模越来越大,而且需要较少的参与者来完成融资。

这表明投资者对该行业的信心越来越大,对技术和潜力有更好的了解。

根据PitchBook的说法,大部分投资者仍然没有拿到投资回报。将机器学习作为核心业务的创业公司只有10%表示已经产生收入,其中只有一半报告了超过5000万美元的收入。此外,外部投资在地理上高度集中,主要由美国和中国的几个技术中心主导,欧洲落后。我们在第3章进一步探讨这些问题。

处在数字化前线的公司和行业已经开始采纳AI,但是其他人还在犹豫

基于期望AI 采用者的市场能够快速发展,并愿意支付AI基础设施,平台和服务,投资者正在向AI 公司投入数十亿美元。

显然,亚马逊,谷歌和其他公司正在为自己的应用程序进行投资,例如优化搜索和个性化营销。但是了解传统医疗保健,零售和电信公司在AI 上所花费的成本并不容易。

为此,我们进行了一次调查,以更深入地了解这一情况。一般来说,很少有公司将AI 大规模地纳入其价值链;大多数具有AI 技术意识的公司仍处于实验阶段或试点阶段。事实上,在3,073个受访者中,只有20%的受访者表示他们在规模上或核心部分采用了一种或多种AI 相关技术。10%的受访者表示采用两种以上的技术,只有9%的受访者表示采用机器学习。

即使这样可能夸大了AI 的商业需求。我们对各种行业的160多个全球用例的审查发现,只有12%的发展超出了实验阶段。商业兼并可以解释为什么一些公司可能不愿意采取行动。在我们的调查中,不良或不确定的回报是企业,特别是较小的公司不采纳AI技术的主要原因。第3章进一步探讨的监管问题也变得更为重要。与每一个新的技术浪潮一样,我们期望看到行业和企业之间早期和晚期采用者的不同模式。我们发现了AI采用早期模式的六个特征,这与公司采用和使用最新的数字技术的方式大致相符。不巧的是,在早期的数字化潮流中领先的同样的玩家正在AI ,下一波浪潮中也居于领先地位。



民银头条 更多

郑伊健分享养颜秘诀 周秀娜否认恋富二代,郑伊健... [详细]

国际财讯 更多

17日是世界肿瘤日,预防肿瘤很重要。在癌症多发的当下,一些抗癌防癌产品也... [详细]

新财经 更多

中国网财经曾发表《新三板创新层首次洗牌倒计时:保层大战硝烟渐起》一文,... [详细]

网金融 更多